Class XI- MATHEMATICS Chapter-2 : RELATIONS and FUNCTIONS Hand out of Module 1/2

Learning Outcome:

In this module we are going to learn about

- > Cartesian Products of Sets.
- ➢ Relations.
- > Number of Relations from a set A to a set B.
- Domain, Co-domain and Range of a Relation.

Introduction:

Let us consider the following problem.

Mohan has 2 pants P_1 and P_2 and 3 shirts S_1 , S_2 and S_3 . How many different pairs of a pant and a shirt, can he dress up with?

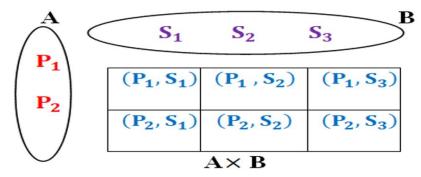
Let A be the set of pants and B be the set of shirts.

Then $A = \{P_1, P_2\}$ and $B = \{S_1, S_2\}$.

We can see that Mohan can make 6 distinct pairs as given below:

 $(P_1, S_1), (P_1, S_2), (P_1, S_3), (P_2, S_1), (P_2, S_2), (P_2, S_3)$

This can be represented by the following diagram



Cartesian Products of Sets :

Given two non-empty sets A and B. The cartesian product $A \times B$ is the set of all ordered pairs of elements from A and B, i.e., $A \times B = \{ (a, b) : a \in A, b \in B \}$

Note :

- (i). If either A or B is an empty set, then $A \times B$ will also be an empty set, i.e., $A \times B = \emptyset$
- (ii). Two ordered pairs are equal, if and only if the corresponding first elements are equal and the second elements are also equal.

- (iii). If there are p elements in A and q elements in B, then there will be pq elements in $A \times B$, i.e., if n(A) = p and n(B) = q, then $n(A \times B) = pq$.
- (iv). If A and B are non-empty sets and either A or B is an infinite set, then so is $A \times B$.
- (v). $A \times A \times A = \{(a, b, c) : a, b, c \in A\}$. Here (a, b, c) is called an ordered triplet.
- (vi). In general, $A \times B \neq B \times A$

(vii). $A \times (B \cap C) = (A \times B) \cap (A \times C)$ and $A \times (B \cup C) = (A \times B) \cup (A \times C)$

Example 1:

Let $A = \{1, 2\}$ and $B = \{a, b, c\}$, find $A \times B$.

Solution: $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$

Example 2:

If, (a - 3, b + 2) = (4, -2), find the values of a and b.

Solution : Since the ordered pairs are equal, the corresponding elements are equal.

Therefore a -3 = 4 and b +2 = -2. Solving we get a = 7 and b = -4.

Example 3:

If, $P = \{a, b\}$ and $Q = \{x, y\}$, find $P \times Q$ and $Q \times P$. Are these two products equal?

Solution: $P \times Q = \{(a, x), (a, y), (b, x), (b, y)\}$ and $Q \times P = \{(x, a), (x, b), (y, a), (y, b)\}$

Since, by the definition of equality of ordered pairs, the pair (a, x) is not equal to the pair (x, a), we conclude that $P \times Q \neq Q \times P$.

Example 4:

Let $A = \{1, 2\}, B = \{3, 4\}, C = \{4, 5\}$ Verify that $A \times (B \cap C) = (A \times B) \cap (A \times C)$. **Solution**: $B \cap C = \{4\}$. Therefore, $A \times (B \cap C) = \{1, 2\} \times \{4\} = \{(1,4), (2,4)\}$(1) Also, $A \times B = \{(1, 3), (1,4), (2,3), (2,4)\}, A \times C = \{(1, 4), (1,5), (2,4), (2,5)\}$(2) Therefore, $(A \times B) \cap (A \times C) = \{(1,4), (2,4)\}$ Hence, from (1) & (2), we get, $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Example 5:

If $A \times B = \{ (x, q), (x, r), (y, q), (y, r) \}$, find A and B.

Solution: A = set of first elements = $\{x, y\}$

 $B = set of second elements = \{q, r\}.$

Note:

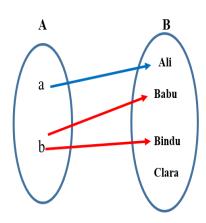
(i) The Cartesian product $R \times R = \{(x, y) : x, y \in R\}$ represents the coordinates of all the points in two-dimensional space.

(ii)The cartesian product $R \times R \times R = \{(x, y, z) : x, y, z \in R\}$ represents the coordinates of all the points in three-dimensional space.

RELATIONS

Introduction:

diagram.



<u>Relation</u>: A relation R from a non-empty set A to a non-empty set B is a subset of the cartesian product $A \times B$.

The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in $A \times B$. The second element is called the *image* of the first element.

Domain of a relation: The set of all first elements of the ordered pairs in a relation R from a set A to a set B is called the domain of the relation R.

<u>Range of a relation</u>: The set of all second elements in a relation R from a set A to a set B is called the range of the relation R.

<u>Codomain of a relation</u>: The whole set B is called the codomain of the relation R.

Note

- (i). range \subset codomain.
- (ii). A relation may be represented algebraically either by Roster method or by Set- builder method.

(iii). An arrow diagram is a visual representation of a relation.

(iv). If n(A) = p and n(B) = q, then $n(A \times B) = pq$.

Therefore, the total number of relations from A to B is 2^{pq}.

(v). A relation R from A to A is also stated as a relation on A.

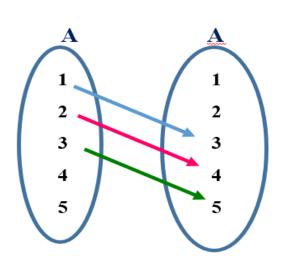
Example 1:

Let A = $\{1, 2, 3, 4, 5\}$. Define a relation R from A to A by R = $\{(x, y) : y = x + 2\}$

- (i). Write the relation in roster form.
- (ii). Write down the domain, codomain and range of R. Is range a subset of co domain?
- (iii). Depict this relation using an arrow diagram.

Solution:

(i). The relation, R = {(1, 3), (2, 4), (3, 5)}.
(ii). domain of R = {1, 2, 3}
codomain of R = {1, 2, 3, 4, 5}
range of R = {3, 4, 5}
Yes, Range is a subset of co- domain
(iii). The corresponding arrow diagram is shown in the adjacent figure.



Example 2:

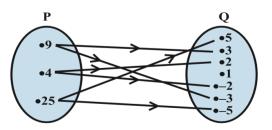
Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. Find the number of relations from A to B.

Solution: We have, $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$

Since n (A×B) = 6. Therefore, the number of relations from A to B will be $2^6 = 64$.

Example:

The adjacent figure shows a relation between the sets P and Q. Write this relation (i) in set-builder form, (ii) in roster form.



(iii) What is its domain and range?

Solution: (i). In set-builder form, $R = \{(x, y): x \text{ is the square of } y, x \in P, y \in Q\}$

(ii). In roster form, $R = \{(9, 3), (9, -3), (4, 2), (4, -2), (25, 5), (25, -5)\}$

(iii). The domain = $\{4, 9, 25\}$. The range = $\{-2, 2, -3, 3, -5, 5\}$.

What have we learned?

- > Ordered pair: A pair of elements grouped together in a particular order.
- **Cartesian product**: Cartesian product of two sets A and B is given by $A \times B = \{(a, b): a \in A, b \in B\}$
- ▶ In particular $R \times R = \{(x, y): x, y \in R\}$ and $R \times R \times R = \{(x, y, z): x, y, z \in R\}$
- > If (a, b) = (x, y), then a = x and b = y.
- If n(A) = p and n(B) = q, then $n(A \times B) = pq$.

$$\rightarrow$$
 A × ϕ = ϕ

- ▶ In general, $A \times B \neq B \times A$.
- Relation: A relation R from a set A to a set B is a subset of the cartesian product A × B.
- > Domain: The domain of R is the set of all first elements of the ordered pairs in a relation R.
- Range: The range of the relation R is the set of all second elements of the ordered pairs in a relation R.